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AN EXPERIMENTAL STUDY OF THE IONIZATION OF LOW-DENSITY
GAS FIOWS BY INDUCED DISCHARGES

By R. L. Barger, J. D. Brooks, and W. D. Beasley
SUMMARY

Induced discharges are advantageous for ionizing low-density flows
in that they introduce no electrode contamination into the flow and they
provide a relatively high degree of ionization with good coupling of
power into the gas. In this investigation a 40-megacycle oscillator was
used to produce and maintain induced discharges in argon and mercury-
vapor flows. Methods for preventing blowout of the discharge were deter-
mined, and power measurements were made with an in-line wattmeter. Some
results with damped oscillations pulsed at 1,000 pulses per second are
also presented.

INTRODUCTION

The lonization of gas flows has various practical applications, such
as for the study of real-gas effects or for the introduction of heat
into the gas. The present investigation was initiated in order to cbtain
information needed for experiments in magnetohydrodynamics.

A variety of techniques for producing the ionization have been
suggested (ref. 1), including ionization by an electron beam, by an arc
or glow discharge in the stream, by a-c corona, and by a radio fre-
quency discharge with electrodes outside the tunnel walls. Most of
these methods have already been investigated. Results of investigations
of a-c corona discharges are reported in reference 2; of radio frequency
electrostatic discharges, in reference 3; and of the d-c discharges, in
many sources (for example, refs. 4 and 5).

None of these techniques has proved to be completely satisfactory.
The a-c corona requires a wire situated longitudinally in the flow, and
the current is quite small; therefore, the degree of ionization is low.
The glow discharge also has the disadvantage of providing small currents
in addition to sputtering electrode material into the flow as a result
of the large voltage drop in the cathode fall region. Impurities are



also released by arc electrodes which may erode or evaporate, particu-
larly at reduced pressure, where the boiling point is lowered. The
problem of electrode contamination is eliminated when the discharge is
maintained by a high-frequency field imposed by "electrodes" outside
the flow tube, but the coupling of a large amount of power into the gas
by this means involves a difficult impedance matching problem (ref. 3).

High current induced discharges with good coupling of energy into
the gas have previously been produced in a nonmoving gas. This inves-
tigation was concerned with the problems involved in obtaining and
maintaining induced discharges in a moving gas.

While this research program was in progress, a report was pub-
lished (ref. 6) which describes a mercury-vapor flow system that uti-
lized an induced discharge. The present report extends considerably
the qualitative information needed in the design of equipment for ion-
izing flows by induction.

DESCRIPTION OF INDUCED DISCHARGE

In order to obtain this type of discharge, high-frequency current
is produced in & coll surrounding the flow tube, which is constructed
of quartz or some other dielectric material, and the alternating mag-
netic field associated with this current generates an electromotive
force {emf) in the gas. When conditions are such that this induced
emf drives a current in the gas, the current flows in a closed loop
opposite 1n direction to the current in the primary coil. This short-
circuiting of the current in the gas establishes a low resistance path
with resulting large currents.

When the current in the primary coil is relatively low, a rather
dull glow appears in the tube as a result of the high-frequency electro-
static field created between the ends of the coil. As the current in
the coil is increased, this electrostatic discharge increases in inten-
sity until at some critical value, which depends on several factors -
including current frequency, the gas pressure, and tube dimensions -
the glow switches discontinuously to an intense high-current discharge
which is of electromagnetic origin. The induced discharge is more
localized in the region of the coil than the electrostatic discharge.

A considerable quantity of experimental information concerning
induced discharges in stationary gases is available. MacKinnon
(ref. 7) demonstrated conclusively that the dull glow was electrostatic
and the brilliant discharge was electromagnetic in nature. His experi-
ments also demonstrated that conaiderably less average power was
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required to start an induced discharge with pulsed current than with
continuous-wave current. More recent researches include measurements
of skin effect (ref. 8) and the experiments of Cabannes with the noble
gases (ref. 9). Cabannes studied the radiation from the discharge,
noting both spark and arc lines, and determined that less than 2 per-
cent of the power dissipated in the discharge was emitted as radiation
at pressures in the low millimeter range and below. He measured the
power lost as heat to the walls calorimetrically and then, by using the
methods of induction-heating theory, computed the conductivity of the
gas from the power dissipated. His results indicated an approximately
linear relationship between the magnitude of the current flowing in the
gas and its conductivity (i.e., the emf created in the gas is almost
constant after breakdown), which is also a characteristic of arc
discharges.

There is, in fact, a rather close analogy between induced dis-
charges and low-pressure arcs. Both are intense high-current discharges
that require a low maintenance voltage after starting. The problem of
inducing a discharge in a moving gas is somewhat similar to starting an
arc transverse to the flow. It is apparent that the flow considerably
complicates the starting problem, since breakdown will not occur as
long as ionization is swept away faster than it is produced.

This study was, for several reasons, qualitative in nature. Such
considerations as "blowout" of the discharge, the relative effective-
ness of pulsed and continuous-wave exciting current, and choking of
the flow have been studied; but discharge parameters such as optimum
breakdown pressure, conductivity of the gas, and so forth were not deter-
mined for several reasons. In the first place, virtually all of the dis-
charge parameters depend strongly on many factors - including the nature
of the gas, its pressure, the geometry of the discharge tube, and the
velocity - so that the task of tabulating the effect of varying each of
these factors would be formidable. Furthermore, the characteristics of a
discharge are so sensitive to small traces of contamination that the
degree of purity required for a precise quantitative study was con-
siderably beyond the capability of the apparatus used. Finally, the
design and operation of equipment for studies of gas-dynamic phenomena
should, in general, not have to rely on precise knowledge of the dis-
charge parameters since such equipment should inherently be rugged and
versatile in its application.

APPARATUS AND PROCEDURE

The flow system that was used for the investigations of induced
discharges in argon is shown diagrammatically in figure 1 and a



photograph of part of the apparatus is shown as figure 2. The use of
a blowdown system is, of course, undesirable for low Reynolds number
flows, but available pumping equipment was not adequate for producing
a continuous supersonic flow. The nozzle would not operate super-
sonically at stagnation pressures less than about 10 mm Hg, and the
operating time was only about 30 seconds. The nozzle exit diameter
was about 19 mm, the same as the inside diameter of the discharge tube.

A d-c arc of 3 or 4 amperes could be struck between a cathode in
the settling chamber and the nozzle, which acted as the anode. This
arc rendered the flow visible. Observation of the angle of the shock
on a thin plate mounted in the stream indicated a Mach number of
about 1.5. The use of this d-c arc for preionization is discussed in
a subsequent section.

The apparatus used for the mercury-vapor experiments is shown
diagrammatically in figure 3. A vapor pressure of about 30 mm Hg is
generated by the boiler, and the pressure ratio across the nozzle is
maintained by condensing the mercury on water-cooled surfaces in a
manner exactly analogous to the operation of a diffusion pump. The
flow system is therefore somewhat similar to that described in ref-
erence 6, except that it was modeled more closely after the original
Langmuir diffusion pump. All the metal components were made of stain-
less steel. The use of a d-c arc or a directly heated tungsten coil
in the settling chamber is required, not only to superheat the vapor
to prevent condensation on expansion through the nozzle, but also to
prevent the vapor from condensing on the walls of the settling chamber.
By use of the arc to visualize the shock angle, the Mach number was
again determined to be about 1.5. (See fig. 4.) For heating the flow,
the heater coil was preferred because a weak arc does not adequately
heat the walls of the chamber, and a strong arc would introduce too
much electrode material into the flow.

The oscillator used for continuous-wave studies was a 40-megacycle
electron-coupled oscillator with a maximum power output of about
1,500 watts. An in-line wattmeter was used to measure the power
directed toward the load and the power reflected. Since the wattmeter
was designed for a 50-ohm line, the output of the oscillator had to be
matched to this impedance by a m-resonant network, but as the load
was actually less than 50 ohms, another impedance-matching circuit
was required to match the load to the line.

An attempt was made to compare the continuous-wave discharge with
that obtained by pulsing the current. For this investigation, a line-
type pulse generator was constructed. This pulser utilized diode
charging, capacitance of 0.1 microfarad or less for energy storage,
and a type 1907 hydrogen thyratron for a trigger. No pulse-forming
network was used. A 4-kilowatt commercially built spark gap unit was
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also used as a pulse supply. Its repetition rate was 2,000 pulses per
second with a ring frequency of 40O kilocycles. The peak pulse current
In these discharges was of the order of 2,000 amperes.

In order to obtain an indication of the decay of the lonization
from pulsed discharges in mercury vapor, the decay of the light inten-
sity from the discharge was studied by use of oscillographic records
obtained with a type 931 photocell tube. This tube doces not measure
the total radiation, but has high sensitivity only in the visible range.
However, it has been shown in reference 10 that the visible radiation
in the mercury-vapor afterglow is approximately proportional to the
total radiation and that it gives a relative indication of the electron
concentration.

RESULTS AND DISCUSSION

When the argon was held stationary in the 19-mm tube and the coil
was fed by the LO-megacycle oscillator, the discharge behaved in a
manner similar to that reported by Cabannes (ref. 9). At a power level
of about 50 watts an electrostatic discharge was obtained at pressures
in the range of 50 microns to several millimeters of mercury. (see
fig. 5.) This figure indicates an apparent tendency of the plasma to
pull away from the wall at the coil. This effect 1s caused by the
refractive effect of the radial component of the magnetic field at the
ends of the coil on the longitudinal motions of the electrons and ions.
Since the degree of ionization is quite low in the relatively weak
electrostatic discharge, thils effect has a negligible influence on the
body of the gas. As the power was increased, the discharge became
brighter, the circuit being kept tuned for maximum brightness, and on
reaching the requisite degree of conductivity (which varies with pres-
sure), it switched discontinuously to the very bright induced dis-
charge. This discharge was localized in the regicn cof the coil but
appeared uniformly bright throughout the radius of the tube (fig. 6).
Under these conditions, Cabannes assumed a distribution of ilonization
over the radius of the tube given by the Bessel function Jg.

However, when the pressure was kept above ahout 0.5 mm, and the
discharge was produced in a large-diameter tube (75 mn), it appeared
somewhat similar to the discharges in mercury vapor and in iodine vapor
described by MacKinnon (ref. 7). The current flowed in a discrete ring
near the outer periphery of the tube. This effect is clearly seen in
figure 7. This current ring was a bright but relatively transparent
blue color, whereas the rest of the gas in the tube emitted a pale
pink glow. The two bright vertical lines in the photograph are an
optical effect due to the curvature of the glass cylinder.



The formation of the discrete current ring is undesirable from the
standpoint of ionizing a flow, since the flow along the axis would
attain a much lower degree of ionization than the gas near the wall,
that is, in the boundary layer. The effective use of the induction
technique for ionization therefore appears to require either pressures
in the millimeter range, or small-diameter tubes or ducts having an
annular geometry. All of the flow experiments reported herein utilized
a 19-mm tube with static pressures of several millimeters.

The Problem of Blowout

When the flow was initiated, the induced discharge was blown out,
but the electrostatic discharge remalned. This effect was anticipated,
since the emf induced in the gas is not large (ref. 7) and considersble
ionization must exist in the gas for breakdown into an induced discharge
to occur. The flow represents a major loss mechanism for removing the
ionization, reducing 1t to & level below that necessary for maintaining
the induced discharge.

The problem of blowout was solved initially by introducing ioniza-
tion into the coil region from a weak preionizing arc in the settling
chamber. The small amount of electrode material released by this weak
arc, although potentially affecting strongly the discharge parameters,
should be negligible for most experiments of gas-dynamic interest.
Figure 8 shows the induced discharge in the argon flow.

Some preionization was cbtalned from the electrostatic discharge,
which is maintained even in the presence of the induced discharge.
When the nozzle block was grounded, this electrostatic discharge was
augmented to such an extent that the separate preionizing arc was no
longer necessary. This result is significant because 1t indicates
that the induced discharge 1s not so tenuous as it at first appears.
It is, in fact, an inherently stable discharge because of the simulta-
neous presence of the electrostatic discharge as a sustaining mechanism.

In the mercury-vapor flow it was unnecessary to use a preionizing
arc or to ground the nozzle to maintaln the discharge with the oscilla-
tor, although grounding the nozzle helped to start the discharge. This
result is not surprising, since mercury vapor, in addition to having
a lower lonization potential than argon, has a sound speed which is
only about 4O percent that of argon, so that the velocity of the mercury-
vapor flow was much lower than the argon flow. The other parameters
(nozzle shape, stagnation pressure, etc.) were approximately the same.
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Difficulty of Working With Nitrogen and Air

An attempt was made to reproduce these results in air and in nitro-
gen, since these gases are of more Iimmediate aerodynamic interest than
argon or mercury vapor. They are, however, considerably more difficult
to work with than the monatomic gases. At pressures higher than about
1 millimeter, the characteristic brightness of the nitrogen plasma was
prominent in the electrostatic discharge. As the power was increased,
the electrostatic discharge became brighter and its relative intensity
became greater in the region of the coil; therefore, the precise point
of transition to the induced discharge was difficult to determine.

The ionlzing efficiency (ref. 11) in nitrogen is considerably
lower than in the monatomic gases, since the electrons use a large part
of the energy that they gain from the field in exciting the vibrational
levels of the molecules and in dissociating them. This action may be
desirable for the purpose of meking studies of real-gas effects in the
flow; but, from the standpoint of obtaining a good conductivity in the
gas and maintaining the induced discharge, it represents a major loss
of available power. Since the voltage gradient in the positive column
of nitrogen arcs and glow discharges is much greater than that in argon
discharges (ref. 12, pp. 234-235 and 327), 1t is reasonable to expect
that the induced emf required to break down and maintain an induced
discharge in nitrogen may be several times that required in argon.

In alr, the situation is somewhat similar to that in nitrogen in
regard to the energy dissipated in dissociating molecules and exciting
vibrational levels. Furthermore, the attachment of electrons to oxygen
atoms and molecules results in greater volume ionization losses.

Induced discharges could be obtained in both air and nitrogen in
the absence of flow, but when the flow was initiated the discharge
reverted to the electrostatic type. With increasing power, the
electrostatic discharge became rather bright within the coil, but even
at the maximum power input (about 1,200 watts), the induced discharge
had failed to reappear. As the appearance of the discharge at this
point was similar to that of the electrostatic discharge in the sta-
tionary gas near the transition point, it is believed that with some-
what more power the induced discharge could have been produced and
maintained in the nitrogen flow.

Power Measurements
With an induced discharge in the argon flow, measurements were

made of the power delivered to the primary coil producing the induced
discharge and of the power reflected back to the oscillator. About



15 percent of the power was reflected, this value being virtually con-
stant within the experimental error.

Of course, not all of the remaining 85 percent of the power was
delivered to the gas. Some of this power was dissipated in heating
the circuit elements, but this loss was relatively small, since these
elements became only moderately warm when the circuit was kept properly
tuned.

The radiation loss can be estimated. The coll diameter was about
0.05 meter and the wave length 7.5 meters. The radiation resistance

of a single turn loop under these conditions is only about 6 x lO'u ohms
(ref. 13), so that even at 25 amperes the power radiated from the entire
coil should be quite small. The radiation from the tuning condenser
should be negligible. The ohmic and radiation losses together are esti-
mated to be about 5 percent of the available power but, even if as much
as 10 percent were lost, 75 percent would still be delivered to the gas.

This method of obtaining a measurement of the power delivered to
the gas is, of course, far from ideal, but it should be pointed out
that an accurate measurement is difficult to obtain. The calorimetric
technique used by Cabannes would be difficult, if not impossible, to
adapt for use with a flowing gas. Furthermore, the region of flowling
water between the coil and the discharge tube implies a very poor
coupling condition, and Cabannes' measurements indicate that cooling
of the wall may actually alter the discharge parameters.

Chuan (ref. 3) measured the power dissipated in a low-density
nitrogen flow by a discharge in the stream. He used a thermocouple to
determine the rise in the temperature of the stream. The major weak-
ness of this method 1s that the tempersature measured would ordinarily
be much higher than the actual gas temperature, since the heat released
by recombination or deionization on surfaces in the flow may be con-
siderable, even so great as to melt small wires of tungsten or other
refractory materials (ref. 5).

Effect of Discharge on Flow Parameters

The effect of the dischsrge on the velocity and Mach number is an
important gas~dynamic consideration. In some discharges, particularly
at higher pressures, a large part of the energy imparted to the charged
particles by the electrical fleld is communicated to the rest of the
gas as heat. At the pressures and powers used in these experiments,
the gas-temperature rise is small, but it is not negligible.

For a static temperature of the mercury-vapor flow of 450° K and
a mass flow of roughly 1.5 grams per second, the temperature would only
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have to be raised by 359 to choke the flow at a Mach number of 1.5.
Since the heat capacity ~CP of mercury vapor is only 0.025 cal/g-°K

approximately 1.12 cal/sec or 5 watts 1s required to choke the flow.
If, in the argon system, a mass flow of 1 g/sec and Initial temperature
of 300° K are assumed, about 11.5 watts are required to choke the flow.

The flow will not necessarily be choked by the discharge, although
choking will result if only a small fraction of the power delivered to
the gas is converted to heat. At low pressures the gas temperature in
a discharge is a function of the pressure and depends weakly, if at all,
on the discharge current. The temperature never exceeds a few hundred
degrees if the pressure is sufficiently low (ref. 12, p. 291), so that
a supersonic flow can be maintained if the temperature in the settling
chamber is sufficiently high.

Experiments With Pulsed Discharges

MacKinnon (ref. 7) found that an induced discharge could be pro-
duced with less average power in a stationary gas with pulsed current
in the primary coil than with continuous-wave current. Experiments
with the spark-gap unit and with the line-type pulser were intended to
determine whether a similar effect occurred in the case of the flowing
gas.

With the spark-gap unit, a very brilllant induced discharge could
be induced in stationary mercury vapor, but with flow no induced dis-
charge could be obtained by this method, either in argon or in mercury
vapor. This failure was attributed mostly to the internal construc-
tion of the unit, which was such that it was difficult to tune the cir-
cuit for a varying load.

With the hydrogen thyratron pulser, which was designed so that
the circuit inductance and capacity could easily be changed, induced
discharges were obtained under rather restricted conditions in both
argon- and mercury-vapor flows. The leads had to be kept short and
heavy and the nozzle had to be grounded. Also, at high repetition
rates of 1,000 pulses per second or more, the capacltance had to be
less than about 0.1 microfarad. At repetition rates of around
1,000 pulses per second, the electrostatic discharge appeared at power
levels of a few hundred watts. Almost 3,000 watts average power were
required to initiate and maintain the induced discharge.

The fact that considerably more power was required to obtain the
induced discharge in the flow with the pulsed current than with
continuous-wave current 1s significant, since it is contrary to the
results obtalned by MacKinnon with discharges in statlonary plasmas.
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An attempt was made to obtain a comparlson of the pulsed discharge
in the flow with that in a stationary gas by comparing the pulse shapes
and light intensity decay under both conditions. As has already been
noted, the form of the light intensity decay curve indicated approxi-
mately the decay of the ionization. Oscillographs taken with an induced
discharge in a closed tube (stationary gas), with an induced discharge
in the flow, and with an electrostatic discharge in the closed tube are
shown in figures 9(a), 9(b), and 9(c), respectively. The amplitudes
of the light intensity curves are not comparsble, since the photocell
had to be moved toward or away from the discharge tube according to the
brightness of the discharge. The first several cycles of the pulse
ringing are not observable in figures 9(a) and 9(b). They can be seen
on the oscilloscope screen, however, and their amplitudes are consider-
ably greater than the pulse amplitudes that produce the electrostatic
discharge (fig. 9(c)).

Figure 9(a) indicates that the power couples well into the dis-
charge, as the ringing in the circuit is rgpidly damped out. When the
induced discharge was produced in the flow, however, much of the power
was dissipated in the circuit ringing (fig. 9(b)) which indicates that
the conductivity never did become very good. Since the pulse decays
more slowly, it is possible for the induced discharge to be maintained
longer. The light decay (fig. 9(b)) indicates that the induced dis-
charge lasts about 30 microseconds, but after the discharge is extin-
guished the light intensity drops rapidly (in about 25 microseconds) to
the reference line. In the closed tube (fig. 9(a)), on the other hand,
virtually all the power appears to have been dissipated after a few
cycles of the ringing and so the discharge is not maintained longer
than 5 or 10 microseconds; but the light decay is much more gradusal,
being nearly linear for about 50 microseconds and then beginning an
asymptotic approach to the reference line.

In the electrostatic discharge, the light intensity decays much
more rapidly than in the induced discharge, as might be expected, with
virtually all the power being dissipated in the circuit ringing.

CONCLUDING REMARKS

Induced discharges could be maintained in low-density argon-and
mercury-vapor flows at velocities near a Mach number of 1. The coupling
of power into the gas by this means appeared to be relatively good, and
a clean, well-ionized flow was produced: The advantages of using pulsed

ONOO\WO H



ON O\

current in the primary coil, as observed in studies with stationary
gases, were not evident when the gas was flowing.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Field, Va., May 11, 1960.
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L-60-921
Figure 2.- Settling chamber, nozzle, and discharge tube of argon

flow apparatus.
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Direction of flow;

L-60-2421
Figure 4.- Shock wave on blade in mercury-vapor plasma flow.
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L-60-2422
Figure 5.- Electrostatic discharge due to voltage developed across coil
in argon with no flow.
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L-60-2423

Figure 6.- Induced discharge in argon with no flow
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L-60-2424
Figure 7.- "Ring" discharge in argon at 1.0 mm Hg pressure with no flow.



20

Figure 8.- Induced discharge in argon flow.

L-60-2425
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